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Abstract 

A sys temat ic  m e t h o d  o f  phase  d e t e r m i n a t i o n  is pre- 
sented  insp i red  by the  d y n a m i c - p r o g r a m m i n g  pr in-  
ciple. In this new p rocedu re  the s tar t ing set and  the 
best  phas ing  sequence  are de t e rmined  whi le  execut ing  
the symbol i c  phase  d e t e r m i n a t i o n  itself. Special  a t ten-  
t ion  is g iven to the way in which  stat ist ical  weights  
for  symbol i c  phase  ind ica t ions  can be ca lcula ted .  Test  
results show tha t  the new p rocedure  leads to cons ider-  
able i m p r o v e m e n t s  over  the p h a s e - d e t e r m i n a t i o n  
p rocedures  based  on  the  convergence  p r o c e d u r e  
cur rent ly  avai lable .  

0108-7673/87/060751-13501.50 

Introduction 

The phase  p r o b l e m  is o f ten  t ack led  successful ly  by  a 
defau l t  run  o f  a d i r ec t -me thod  s t ruc tu re -de te rmina-  
t ion  p rogram,  such as S I M P E L  (Overbeek  & Schenk ,  
1978; Schenk  & Kiers,  1985), M U L T A N  (Ma in ,  
1985), S H E L X  (Sheldr ick ,  1985) or G E N T A N  (Hal l ,  
1985). However ,  the s t ructure  is not  a lways  f o u n d  
immedia te ly .  A l t h o u g h  the  reasons  for  fa i lure  may  
vary,  the user  o f  a p r o g r a m  shou ld  at least  be guaran-  
teed tha t  u n d e r  the  given bas ic  p robab i l i s t i c  assump-  
t ions  the  best  poss ib le  phase  de t e rmina t i on  is car r ied  
out;  tha t  is, the  chance  o f  ob t a in ing  the  correc t  solu- 
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752 OPTIMAL SYMBOLIC PHASE DETERMINATION 

tion should be maximized. For the current direct- 
method packages such a guarantee cannot be given, 
whether numerical phase values (MULTAN, 
SHELX, GENTAN)  or symbolic ones (SIMPEL) are 
used. The phase-determination procedures of these 
programs consist of two distinct parts. Firstly, the 
convergence procedure (Germain, Main & Woolfson, 
1970) is performed to yield a number of starting 
phases and the order in which the remaining phases 
may obtain their phase values. After the origin is fixed 
with a few of the starting phases the others are 
assigned numerical or symbolic phase values. Then, 
secondly, most other phases are determined either in 
t h e  reverse convergence order or by use of acceptance 
criteria or weighting schemes. It will be indicated in 
this paper that the convergence procedure and the 
subsequent phase determination are not necessarily 
the best choices in carrying out the phasing. A more 
systematic method of phase determination, suggested 
by the dynamic-programming principle (Bellman, 
1957), is presented. This phase-determination pro- 
cess, referred to throughout this paper as dynamic- 
programming phasing or DPP, results in optimal 
phasing given a priori probabilistic assumptions. 

1. T h e  c o n v e r g e n c e  m e t h o d  

Germain, Main & Woolfson (1970) developed the 
convergence procedure in direct methods to obtain a 
starting set of phases from which all others may be 
obtained in successive steps. The procedure uses a 
large set of the strongest reflections and all their triplet 
relations. The phase of the reflection which is proba- 
bilistically worst determinable by all other phases is 
removed from the set and at the same time all its 
relationships are deleted. This process is repeated 
until all reflections and relations have been removed. 
Every now and then a reflection is removed which 
has no relationship left; the phase of such a reflection 
is a starting-set phase, i.e. a phase the value of which 
has to be chosen. So, finally, the convergence pro- 
cedure results in: (1) a starting set of reflections, the 
phases of which will be used as a starting point in 
the successive phase extension; and (2) a sequence 
S of removed reflections, which in reverse order (S -~ ) 
may guide the phase extension. The criterion function 
for removing reflections from the set and transferring 
them to the sequence $ is based on the joint probabil- 
ity distribution of the phase q~H taking part in n 
triplets, given the magnitude I E,  I and all other magni- 
tudes and phases involved. 

P(~H]qbK,, q:'.-K,,. • •, qbt¢., ~ . - K . ,  

IE, I, IE,,,I,...,IE,-~°I) 

=L-lexp[2~E3jcos(-CI)H+@K+cI) ._Kj)] .  
j = l  

(1) 

L -t is a normalization constant and 

E3i = wjZ3 EuEKjE._Kj for a general triplet 

E3j=O'5wjZ3IEHE~:,En-K,I for a restricted triplet. 

(2) 
E3~ is a modified form of the usual triplet argument 
E3 (Cochran, 1955; Cochran & Woolfson, 1955). Z3 
depends on the atomic numbers, 

z 3 =  z~ z 2 , j, , (3 )  
Jl = 1 Jl = 1 

and the weight w~ depends on the space-group multi- 
plicities of the reciprocal vectors H, K and H - K  
(Giacovazzo, 1974). If we introduce 

an exp ( i~n)  = ~ E3jexp[i(~K+~u-K,)] ,  (4) 
j = l  

(1) can be written as 

P(@H] • • • ) = L -~ exp [2all cos (--~H + --~H)] (5) 

with 

a2 = E E3jE3j'COS [( ~K,+ Clbo-K,)--( clgK,.+ ~H-I%.)] • 
.hi' 

(6) 
The actual criterion used by Germain et al. (1970) is 
the square root of the averaged value of a~ ,  (a2) 1/2, 
with 

j= 1 j< j '  

x (cos [(~K,+ ~ , -K, ) -  ( ~K,+ ~ -  ~,)]). 
(7) 

This expression cannot be evaluated, because no 
phases have been determined yet; therefore Germain 
et al. approximate the expectation values on the right- 
hand side of (7) by the product of the expectation 
values for each single triplet, 

(COS (~K, + ~ . - K , -  qb.)) = Bq(2E3j), (8) 

with Bq the quotient of two modified Bessel functions 
(Watson, 1952), 

Bq(2E.) = ],(2E3j)/ lo(2E.). (9) 

The convergence part of the SIMPEL system is 
applied to triplets and (optionally) quartets with an 
even simpler criterion, 

n'  

~,~,)'/~= E E~j+ I; (E'j) 2 (lo) 
j = l  j = l  

with E* associated with the quartet relation (Schenk, 
1973). 

In MULTAN the reverse sequence of S, S-1, is 
used to guide the determination of the phases. Since 
the calculated statistical weights and phase values 
propagate throughout the phasing process, it cannot 
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be expected that S -t,  calculated necessarily without 
this actual phasing information, will be the best pos- 
sible phasing sequence. 

In S I M P E L  S -t is not used; instead, a set of strict 
criteria is used for accepting new phase indications. 

The order in which the phases are determined in 
both M U L T A N  and S I M P E L  does not guarantee 
that the most reliable set of phases is obtained. A 
preferable procedure is one which calculates from 
scratch both the starting set and the order in which 
the remaining phases should be determined, optimiz- 
ing at any moment the statistical weights of the phases. 

2. Optimal phase determination 

2.1. Requirements for a phase-determination process 

We shall first formulate the requirements for a 
phase-determination process: 

(1) As many phases as possible with a unique 
phase indication are to be determined. If symbolic 
phases are used, as is assumed throughout this paper, 
phases may acquire different symbolic phase indica- 
tions. These phases cannot be used to determine other 
phases unless suitable assumptions are made. 

(2) The final set of phases should be as reliable 
and as large as possible. 

(3) The number of reflections the phases of which 
must be chosen, the starting-set reflections, should be 
as small as possible. 

(4) Neither the starting reflections nor the order 
in which the remaining phases should preferably be 
determined must be defined a priori. 

2.2. The dynamic-programming approach 

The phase-determination procedure to be discussed 
proceeds along the lines of the dynamic-programming 
method introduced by Bellman (1957). Dynamic pro- 
gramming is a technique for handling so-called multi- 
stage decision processes in order to obtain an optimal 
sequence of decisions with respect to a specified 
criterion function. 

In the case of the phase determination an optimal 
sequence of phases to be determined is required 
through a set of M reflections. The first thing to do 
is to select a criterion function for this problem. An 
obvious choice is to base the criterion function on 
weights to be assigned to the reflections as they are 
successively added to form a sequence. (For other 
criterion functions see § 4.) Consider the generation 
of a sequence of M reflections. The (j + 1)th reflection 
that is going to be combined with the sequence of 
the j preceding reflections may form triplets with 
reflections in this j-sequence (we shall call a sequence 
of n reflections an n-sequence). The strengths and 
the number of the triplets are a measure of the affinity 
of the ( j + l ) t h  reflection with the j-sequence, and 
this can be expressed in a weight to be assigned to 

the (j + 1)th reflection in the sequence. (The calcula- 
tion of the weights will be discussed in § 3). In this 
way a weight has been assigned to each of the reflec- 
tions in the sequence. The total weight of the M- 
sequence is a measure of its quality and can be used 
as a criterion function for the M-sequences. 

The total number of possible sequences of M given 
reflections is M ! It is quite clear that, in general, one 
cannot possibly handle all possible sequences in order 
to arrive at the optimal one (10!=3.63 x 106; 20! = 
2.43 x 1018; 30! = 2.65 x 1032). A systematic procedure 
for getting at the optimal sequence, involving a small 
fraction of the effort required for the above approach, 
is provided by the dynamic-programming method. 

The procedure will now be explained in some 
detail. It is executed in a number of stages. In each 
stage j (1 -<j < M) optimal j-sequences are selected, 
combining each reflection with the optimal ( j - 1 ) -  
sequences which result from the previous stage. In 
the zero or initial state no sequences are present yet: 
the procedure starts from scratch. In the first stage 
optimal 1-sequences are selected. Obviously, no 
phases can be determined since the 0-sequence con- 
tains no reflections but any reflection it, it = 1 , . . . ,  M, 
can be selected as a starting-set reflection so that M 
optimal 1-sequences result. In the second stage, 
optimal 2-sequences are to be found. If only triplets 
amongst three different reflections are considered, 
any reflection i2 can be chosen to be a starting-set 
reflection, in combination with any optimal 1- 
sequence reflection il, provided i2 ~ il. Hence, after 
the second stage M x ( M - 1 )  optimal 2-sequences 
result. The first stage to be performed in practice is 
the third stage, concerned with the selection of 
optimal 3-sequences. A particular reflection i may 
form a triplet with the optimal 2-sequences. The triplet 
with the largest E3 is the optimal 3-sequence ending 
at reflection i. This optimal 3-sequence and its associ- 
ated weight are assigned to reflection i. In this way 
each reflection i, i=  1 , . . . ,  M, is provided with an 
optimal 3-sequence °$3~, ending at reflection i, and an 
associated weight o 3 wi. In the next stage each of the 
M reflections in the set is combined with each of the 
optimal 3-sequences, in which the reflection is not 
represented, to form 4-sequences. For each of the 
4-sequences ending at reflection i the weight of reflec- 
tion i, w 4, can be calculated. If this weight is added 
to the weight of the 3-sequence j the total weight 

TT  r 4  O 3 - -  4 wi = wj-,-wi for the 4-sequence is obtained. The 
largest weight of all the 4-sequences ending at reflec- 
tion i indicates the optimal 4-sequence ending at this 
reflection. In this way for each of the reflections 
1 , . . . ,  M an optimal 4-sequence °S 4, with an associ- 
ated weight ° 4 W~, can be obtained. So at the end of 
the fourth stage we are left with M optimal 4- 
sequences, one for each i. 

This procedure is repeated until finally the Mth 
reflections are combined with the optimal ( M - 1 ) -  
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sequences, resulting in optimal M-sequences, °S~, 
with weights °W~. Of these sequences, the one with 
largest °W~ is the optimal M-sequence looked for. 

Remarks 

(1) The weights assigned to the individual reflec- 
tions lie in the interval 0-1 (see § 3). 

(2) If a reflection is combined with an optimal 
sequence with which it does not form triplets no 
weight can be calculated for this reflection. Con- 
sequently, it is assigned a starting-set reflection with 
a weight 1.0. 

(3) It is possible that at a certain stage there are 
several optimal sequences with the same number of 
starting-set phases ending at a particular reflection. 
These are all included in the procedure. 

(4) At each stage several optimal sequences ending 
with the same reflection, but differing in the number 
of starting-set reflections, can be present (see § 4). 

(5) Towards the end of the procedure the number 
of sequences to be combined with an additional reflec- 
tion drops, because the probability that the new reflec- 
tion is already present in a sequence increases. 

3. Calculation of weights for symbolic phase 
indications 

In the numerical direct methods like MULTAN the 
calculation of a phase is based on the tangent formula 
(Karle & Hauptman, 1956; Karle & Karle, 1966), 
which can be obtained by equating to zero the deriva- 
tive of (1) with respect to @H. In practice, weighted 
tangent expressions are employed, including weights 
wK, and w/q_~, for the known phases, 

~E3jWK~WI-t- Kj sin (~Kj + ~ , -  Kj) 

tan (~H) = j=l 

E 3 j W K j W H _ K  j 
j = l  

cos ( ~Kj + ~ , -  r,) 

(11) 

The weight wH for the phase indication (11) is not 
unique and may be defined in various ways (Germain, 
Main & Woolfson, 1971; Hull & Irwin, 1978; 
Giacovazzo, 1980). 

In the SIMPEL program only phases for which a 
unique (symbolic) phase indication is obtained are 
accepted provided the (sum of) E3's of the relations 
involved meet a strict reliability threshold value. No 
other weighting is employed for the accepted phases, 
which in turn may determine new ones. 

We shall now explain how a symbolic phase indica- 
tion and a weight for the reliability of the phase 
indication can be calculated simultaneously. The 
starting point is (5) from which the expectation value 
(exp (iq~,)} can be obtained in a standard way, either 
by integration or by summation, depending on 

whether H is a general or a restricted reflection 
respectively. These two cases will now be considered. 

For a general reflection H, (exp (@H)) can be 
expressed as 

(exp (i~n)} 

= [ l l ( 2 a n ) / I o ( 2 a . ) ]  exp (i--~n) 

= [ I , (2a.  )/10(2aH )]a H 1 

× ~ E3jexp[i(CI)K,+~H-K,)]. 
j = l  

(12) 

Expression (12) enables one to estimate (exp (itCH)) 
when a number of phases @K and @H-K are known. 

In the case of a single triplet indication and with 
@K and @n-K as starting-set phases the exponentials 
in the right-hand side of (12) are known exactly and 
the estimate can be expressed as 

(exp ( i ~ . ) ) =  Bq(2E3) exp [i(~K + ~H-K )] 

= gH exp [i(A + x)]. (13) 

A + x  is the symbolic phase indication for qbH with 
A the symbolic and x the numerical part. gH, which 
can be considered as a reliability indicator for A + x, 
lies between 0 and 1. In all other cases, the exponen- 
tials on the right-hand side of (12), assumed to be 
known, are not known exactly. The only available 
quantities are the (exp (itlb H)). Hence, after substitu- 
tion of the expectation values for the unknown 
exponentials in (12), representation of each sum of 
phases qbK + q~n-K in a symbolic part Aj and a 
numerical part x,, and multiplication of the weights 
gK and gH-K into g,,, the resulting expression can be 
noted as a sum over m different symbolic parts, for 
each of which mj different numerical parts are 
present: 

(exp ( i~H )} -- - -  
l , (2 f l . )  " 
10(2flH ) fl a' ~ exp (iAj) 

J = l  

x E3,, g,, exp ( ix,, ) 
t i=  1 

with 

j = l  t I 

+ 2 ~. ~ E3 t, E3,j. g,, go' 
j , j ' = l  tl.t;=l 
j< - j ' and  t, < ty 

fo r  j = j '  

x cos [(Aj + x , , ) - (A /+ x,,)]}. (14) 

Expression (14) can be further simplified by applica- 
tion of standard goniometric expressions and with 
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the definition for 
(15)-(22), 

each different Aj of the functions 

% 
E3k(j) = Y. E~tj (15) 

tj=l 

% 
wgc(j) = E E3tjgtj COS (Xtj) (16) 

tj=l 
% 

wgs( j )=  E E3,jg,j sin (x,,) (17) 
tj=l 
mj 

scw(j )=  E [E3tjgtj COS(Xt/)] 2 (18) 
tj=l 

% 
SSW(j) = E [E3tjgtj sin (x,~)] 2 (19) 

tj=l 
2 rj -- [ w g c ] ( j ) ] 2 +  [wgs ( j )]2 (20) 

tan (yj) = wgs(j)/wgc(j) (21) 

and 
2 Dj - E3k(j)+ r2--SCW(j)--SSW(j). (22) 

For example, if only one symbolic phase part Al 
is present, (14) reduces to 

I I (2D1) rl 
(exp (i~H))=Io(2Dl------------~~ D, exp[i(A1 +Yl)] 

= gn exp [i(A1 + Yl)]- (23) 

Expression (23) is similar to (13), the weight gH, 
0 <- gH < 1, serving as the indicator for the reliability 
of the symbolic phase indication A1 +Yl. 

If, owing to symmetry, the phase qbu is restricted 
in its value to vl and v~ + 7r with 0 -  vl < 7r, the calcu- 
lation of (exp (i@H)) results in 

mj 
(exp ( i~H))=exp  (ivl) tanh ~ ~ E3tjgt j 

j= l  tj=l 

x cos ( -v ,  + Aj + xtj) ]. (24) 

If only one symbolic phase part A1, restricted to 
the values zaa and AI + 7r, is present, A~ can be written 
as the sum of a new symbol A~, restricted to 0/~r, 
and the numerical part A a. 

If we define X't,=X,,+AI--Vl, (24) can be 
rearranged to give 

(exp ( i~n))  

=exp (ivt) t anh /cos  (A~) 

P 

L 
E3tt gtl cos (xq  . 

tl=l 
(25) 

From definition (16), the sum in (25) is wgc'(1)= 
swgc(1) with s = + l .  For s = + l ,  t anh ( sx )=  

s tanh (x). Therefore 

(exp (iqbn)) 

A1 +~(1 - s)Tr]} tanh (wgc'(1) ) =exp{ i [v l+  ' 1 

= exp { i[A1 + v l -  A1 +½(1 -- s) 7r]} tanh (Iwgc'(1)). 

(26) 

Once again, (exp (i@H)) has been expressed in the 
form (13), as an exponential phase part containing 
the symbolic phase indication times a weight factor, 
in this case the hyperbolic tangent term, which lies 
between 0 and 1. It will be clear that this similarity 
of expressions greatly facilitates the mixing of general 
and restricted reflections in the actual phase determi- 
nation. 

So far only the case of one unique symbolic part 
A1 for a phase indication has been considered with 
different numerical phase parts x. When two or more 
different symbolic phase parts Aj are present, 
(exp (iCrPH)) cannot be expressed as a unique phase 
as in (23) or (26). In the absence of any information 
about the most probable value for the relation 
between the A/s the only reasonable choice is a 
uniform distribution. In the Appendix* it is shown 
how these calculations are performed when two 
different symbolic phase parts are involved. The 
result, which can be expressed in the form of (13), 
again consists of one phase indication, the most prob- 
able one, and a weight, which is lowered appreciably 
by the fact that another phase indication is present. 
It is expected that including these phases in the DPP 
procedure will, in general, not lead to unreasonable 
phase propagations because the corresponding 
weight is treated like all other weights; thus, only if 
a weight leads to maximization of the criterion func- 
tion will the most probable phase indication be 
accepted. 

Complete disregard of these phases, as in SIMPEL, 
has the disadvantage that fewer phases will be 
reached. 

4. The criterion function 

In view of the goal of DPP to phase as many reflec- 
tions as possible with as few starting reflections as 
possible the number of starting reflections is allowed 
to vary within certain limits. This implies that for a 
particular stage the criterion function is a function 
of the number of starting-set phases present. This will 
be indicated by us!ng for the criterion function the 
extended form W~(Nst), with Nst the number of 
starting phases present amongst the j reflections in 
the sequences ending with reflection i. The choice of 

* The Appendix has been deposited with the British Library 
Document Supply Centre as Supplementary Publication No. SUP 
44018 (4pp). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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the criterion function W is of the utmost importance, 
since the DPP aims at maximizing W, and as a result 
all phasing sequences are optimal only with respect 
to W. Several functional forms are possible which 
incorporate the above ideas, and three of them have 
been tested: 

(i) Criterion function W1. This criterion function 
consists of the sum of weights of the non-starting 
phases. In the determination of each phase i in stage 
j of the DPP procedure, 

Wl~(Nst) = ~  g.  maximal. (27) 
H 

(ii) Criterion function W2. This function is based 
on the assumption that the integral of the squared 
difference between the true E map 19, calculated with 
measured I El's and the true q~u's, and the estimated 
density map Pc, calculated with the measured IE's 
and the estimated phases (exp ( i~ . ) ) ,  should be as 
small as possible [see also Hasek (1984)], 

W2~(Nst )=-~  p(r)-pe(r) 2 dr maximal. (28) 

By insertion of 

p(r) =Y EH[exp(i~H) exp(2zriH.r) (29) 
H 

and 

pc(r) = Y, [En (exp (iq~/)) exp (2 t r i l l ,  r) 
H 

=Y, En gnexp(i~en) exp(2zrin.r) (30) 
H 

and by use of Ix[ = (x'x) ~/z, (28) is converted into 

.~ X ]E,-,IIE,-,.I 
H,H' 

x ({exp [ i( @n - qbn,) ] + g,gn' exp [ i( qb~ - @~,)]} 

-g , ,{exp  [ i( @n - @~')] + exp [ - i (  @, - qb~,) ]}) 

x exp [2 r r i (H-  H ' ) .  r] dr. (31) 

The only non-zero contributions are for H = H '  so 
that 

W2~(Nst) = - E  Eul2{g~ + 1-2gn cos (q~n-  qb~)} 
H 

= maximal. (32) 

The aim of the procedure is to find ~ = @., when 
(32) becomes 

W2~(Nst) = -Y, EH 2 ( g H  -- 1 )  2 = maximal. (33) 
H 

The summation in (33) is for the non-starting 
phases only. 

(iii) Criterion function W3. Another interesting 
criterion would be the maximization of 

-J' [p ( r ) -  pe(r) I dr. (34) 

However, the integrations involved are too compli- 
cated and therefore, in order to have a criterion 
approximating (34), the following criterion has been 
used: 

W3~(Nst) = - ~  IE.Ilg.- ll=maximal. (35) 
H 

Again the summation runs over the non-starting 
phases only. 

For all three criterion functions the optimization 
leads to at least one optimal sequence; in general, 
however, it leads to more since the functional depen- 
dence of the criteria on the number of starting phases 
complicates the procedure. Suppose that phase num- 
ber i can be determined at stage number j by means 
of two sequences. Let ' the  number of determined 
phases, including phase number i, be Nd(1) and 
Nd(2) respectively and the number of starting phases 
Nst(1) and Nst(2), with j = N d ( 1 ) + N s t ( 1 ) =  
Nd(2)+Nst(2) ,  and the criteria values R1 and R2 
respectively. Now different situations may occur: 

(i) 

Ns t (1)=Nst (2)  and Nd(1)=Nd(2) .  

This case is simple: the sequence with the largest 
criterion value is selected. 

(ii) 

(a) 
Nst(1) > Nst(2) [ 3  Nd(1) < Nd(2)]. 

R1/Nd(1)  <_ R2/Nd(2) .  

Sequence 1 is not optimal because, in spite of the 
presence of more starting phases than in sequence 2, 
the average weight of the determined phases is lower. 

(b) 

R1/Nd(1)  > R2/Nd(2).  

In this case, the average weight of the determined 
phases is larger for sequence 1 but also more starting 
phases are present. Acceptance now of only one of 
the two sequences may result in non-optimal results 
because the aim of the DPP is twofold; (a) to deter- 
mine as many phases as reliably as possible; and (b) 
to use as few starting phases as possible. If only 
sequence 1 is accepted, the rejection of the optimal 
sequence 2 with fewer starting phases violates the 
second part of our goal. If sequence 1, with a larger 
average weight, is rejected the first part of our goal 
is not fulfilled. Thus no choice can be made, and 
therefore both sequences are accepted. In the present 
implementation of DPP, sequences with up to six 
different number of starting phases can be assigned 
to each determined reflection i in stage j. 
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5. Test results and discussion 

In order to judge the performance of the DPP pro- 
cedure, referred to as procedure I, it will be compared 
with the current symbolic phase determination pro- 
cedures. For this purpose, four alternative procedures 
have been selected. Procedure II consists of a default 
run of SIMPEL [application of convergence criterion 
(10) followed by phase extension] and procedure IV 
employs the convergence criterion (7) followed by a 
default symbolic addition run by means of SIMPEL. 
Since the $IMPEL symbolic addition routine employs 
a unit weighting scheme, only a comparison on the 
basis of phase differences is possible. In order to 
enable a comparison of weighted phase differences, 
the DPP program optionally allows the introduction 
of an a priori defined starting set, followed by the 
DPP procedure itself, in which the introduction of 
additional starting phases can be suppressed. This 
amounts to an optimal symbolic phase determination 
with respect to both the criterion function and the 
predefined fixed starting set. The resulting values of 
the criterion function now compare directly with 
those of procedure I and also the weighted phase 
errors can be compared directly. This procedure is 
used in combination with either the SIMPEL starting 
set resulting from (10), referred to as procedure III, 
or that from (7), referred to as procedure V. 

A reasonable test for the quality of the calculated 
phase sets is the overall weighted absolute difference 
between the symbolic and the true phases: 

AV= Y~ gu qb(symb)- ~ ( t r u e ) l / ~  gH, (36) 
H / H 

with the summation running over the non-starting-set 
reflections only. For the DPP results it is to be ex- 
pected that there will be a correlation between the 
differences and the weights. In general, extreme 
values of the criteria (27), (33) and (35) should indi- 
cate more reliable phase sequences, corresponding 
with lower AV values. To calculate (36) the symbols 
are replaced by their actual numerical values from 
the known structure. The weights gH are either the 
calculated statistical weights (procedures I, III and 
V) or unit weights (procedures II and IV). 

5.1. Comparison of the criterion functions W1, W2 
and W3 

In § 4 three criteria were introduced, W1, W2 and 
W3, given by the expressions (27), (33) and (35) 
respectively. W1 emphasizes the importance of a 
large average statistical weight, the other two include 
the individual I E I's as well. The quality of the results 
of the DPP procedure using W1, W2 and W3 can 
be judged on the basis of the differences (36). 

From all tests performed so far it appears that the 
three criteria lead to completely comparable error 

levels within 10 millicycles (mc) (=3°). Therefore, in 
this paper only the data for W1 will be listed. The 
equal error level might suggest that the actual form 
of the criterion function is not important, but some 
related criteria have been tested and these results 
show that this is not the case. 

5.2. Results for structure Kanter, P1 

As a first example, the results obtained for the 
30-atom P1 structure Kanter (Kanters & van Veen, 
1973) will be discussed. From the 40 phases with the 
strongest IEl's, 32 were employed, interlinked via 23 
triplet relations; the other eight phases were not con- 
nected with the rest of the set via triplets and were 
therefore omitted. In Table I the results obtained with 
procedures II, III, IV and V are listed. Both conver- 
gence criteria (7) and (10) (in the latter the quartets 
were excluded) came up with a starting set consisting 
of 11 phases, three origin-fixing ones and eight phases 
to which symbolic phase values were assigned, 
differing in only one symbolic phase. Procedure II 
(default SIMPEL) resulted in 15 uniquely determined 
phases but from the start onwards the average error 
for this procedure is rather high, up to 94 mc for the 
15 determined phases (see Table 1). In the next 
columns of Table 1, the results for procedure III are 
listed, employing the same a priori starting set as 
procedure II. For each stage the largest three W1 
values are listed only along with the corresponding 
average phase errors. These results show, in contrast 
to those of procedure II, an overall gradual increase 
of the overall error level as the number of determined 
phases (Nd) increases whilst the average weight of 
the determined phases (W1/Nd)  decreases. Further- 
more, starting from N d =  10, the weighted average 
errors are systematically lower than the unweighted, 
illustrating that phases determined with a statistically 
lower weight will generally contain a larger phase 
error. The results for procedures IV and V show that 
the tendencies observed for procedures II and III are 
also present there. A comparison of procedures III 
and V indicates that starting at Nd = 10 the largest 
three W1 values are systematically larger for pro- 
cedure V and the average errors lower. 

In Tables 2, 3 and 4 test results of procedure I have 
been ordered in different ways. First of all, in Table 
2, the optimal sequences have been listed according 
to the stage number (Ncy) which equals the total 
number of phases present in the sequence. In Table 
3, the influence of the increase of the number of 
starting phases is shown while the number of deter- 
mined phases is kept constant. Finally, Table 4 lists 
for various Nst how many phases can be determined 
in an optimal way. 

Table 2 shows that in most stages optimal sequences 
are built up based on different numbers of starting 
phases. For example, the 20th stage results in optimal 
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Table 1. Results of the phasing procedures II, III,  IV and V applied to the structure Kanter (P1 ; 30 equal atoms) 

For procedure  I see Tables 2, 3 and 4. The strongest 32 reflections have been employed,  connected via 23 triplets. Nst = 11 for procedures  
II, I I I ,  IV and V. Procedures II and I I I  on the one hand  and IV and V on the other  differ only in one starting phase. 

II I I I  

Sequence with 
highest W1 second W1 third W1 

Nd Av Nd W1 Av W1 Av W1 Av 

5 101 5 4.54 38 4.54 45 4.54 49 
7 78 7 6.34 42 6.34 38 6.33 35 

10 66 10 8.95 50 (51) 8-94 53 (54) 8.94 41 
13 76 13 11.42 75 (77) 11.40 78 (80) 11.39 75 (77) 
15 94 15 13.00 76 (77) 12.96 91 (95) 12.91 73 (74) 

IV V 

Sequence with 
highest W1 second W1 third W1 

Nd Av Nd W1 Av W1 Av W1 Av 

5 61 5 4-55 50 4-54 44 4-54 48 
7 50 7 6-35 45 6.35 42 6.34 44 

10 49 10 9.03 49 9.03 41 9.03 52 
13 61 13 11.62 54 11.60 56(57) 11.53 59 (61) 
15 68 15 13.21 66(67) 13.13 62(64) 13.12 54 
16 74 16 13.93 71(73) 13.91 63 (64) 13.88 69(72) 

The following notation has been employed in all the tables. Procedures employed: (I) DPP procedure; (II) standard SIMPEL procedure: convergence 
criterion (10) and unit-weighting scheme in symbolic addition; (III) convergence criterion (10), followed by an optimal phase determination only (a priori 
starting set); (IV) convergence criterion (7), followed by a standard SIMPEL symbolic addition (unit-weighting scheme for determined phases); (V) 
convergence criterion (7), followed by an optimal phase determination (a priori starting set). In cases where the inclusion/rejection of the most-probable 
phase indications yield different results, each procedure is marked further with an a, indicating rejection, or b, denoting the inclusion of such indications. 

Nd = number of determined phases, i.e. with a calculated weight; Nst = number of starting phases; Ncy = number of DPP stages, which also equals the 
number of reflections in the phasing sequence, Nst + Nd; Av = average phase error of the determined phases [see (36)], The unweighted average error is 
listed between brackets if it is different from the weighted error. The average error(s) are given in millicycles (mc); WI = criterion function value. Criterion 
function WI, defined in (27), has been employed throughout. With the exception of procedures II and IV, the largest three criterion values are listed for 
the combinations of Nd and Nst under discussion. 

Table 2. Results of dynamic-programming procedure I applied to the structure Kanter 

The same reflections and triplets have been used as for the procedures  I I -V,  the results of  which are listed in Table 1. For each 
combinat ion  o f  Nd  and Nst the largest three criterion function values WI  are listed with the corresponding average phase errors of  
the Nd phases. 

Sequence with 
highest W1 second W1 third W1 

Ncy Nd Nst W1 Av W1 Av W1 Av 

10 5 5 4.54 27 4-52 30 4.52 36 
15 7 8 6.36 39 6.35 45 6.34 43 

8 7 7.24 44 7.23 41 7.22 39 
9 6 7.80 57(58) 7.75 62 7.67 59 

20 10 10 9.04 50 9-04 42 9.04 42 
11 9 9.92 53 9.90 52 9.90 52 
12 8 10-72 51 10.67 57(58) 10.65 47 
13 7 11.13 48(47) 11.12 48(47) 10.87 54 

22 12 10 10.81 52 10.80 51 10.79 50 
13 9 11.62 61(62) 11-57 51 11.57 56(57) 
14 8 11.99 67(68) 11-96 56 11.94 46 

25 15 10 13.31 62 13.31 55 
16 9 13-68 68(70) 13.68 63(65) 13.64 50 

26 16 10 14-11 58(59) 14-00 65(67) 13.98 66(67) 
27 17 10 14.78 62(63) 14.66 58(60) 14.59 65(66) 
28 18 10 15.37 62(63) 15.26 56(57) 

For abbreviations used, see Table 1. 
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Table 3. Results of dynamic-programming procedure I for the structure Kanter 

Results are ranked according to number of  determined phases (Nd).  

Sequence with 
highest W1 second W1 third W1 

N d  Nst Ncy W1 Av W1 Av W1 Av 

5 4 9 4.27 60(61) 4.11 51 (59) 
5 10 4.54 27 4.52 30 4-52 36 
6 11 4.54 46 4.54 48 4.54 55 

7 5 12 6.02 69 6.02 59 5.92 55 
6 13 6.33 36 6.32 36 6.31 31 
7 14 6.36 43 6.34 45 6.34 38 
8 15 6.36 39 6.35 45 6.34 43 

10 6 16 8.33 58(57) 
7 17 8.97 42 8.96 46 8-93 46 
8 18 9.02 49 9.00 47 8.99 45 
9 19 9.04 47 9.03 53 9.03 46 

10 20 9.04 42 9.04 50 9.04 50 
13 7 20 11.13 48 11.12 48 10-87 54 

8 21 11.40 67 (69) 11.36 58(59) 11.35 58(59) 
9 22 11.62 60(61) 11.57 51 11.57 56(57) 

10 23 11.68 49 11.66 49 11.66 55 
15 9 24 13.09 64(65) 13.09 69 (70) 13.03 52(53) 

10 25 13.32 61 (62) 13.31 62 13.31 55 
16 9 25 13.68 63 (65) 13-68 68 (70) 13.64 50 

10 26 14.10 58 (59) 14.00 65 (67) 13.98 66(67) 
17 10 27 14.78 62(63) 14.66 58(60) 14.59 65(66) 
18 10 28 15.37 62 (63) 15.20 56(57) 

For abbreviations used, see Table 1. 

Table 4. Results of dynamic-programming procedure I for the structure Kanter 

Results are listed for nine starting phases (Nst = 9). For Nst = 5-10 the number of  phases (Nd range) is listed which can be determined 

Sequence with 
highest W1 second W1 third W1 

Nst 

9 

optimally. 

Nd Ncy W1 

8 17 7-25 
9 18 8.15 

10 19 9.04 
11 20 9.92 
12 21 10.77 
13 22 11-62 
14 23 12.42 
15 24 13.09 
16 25 13.68 

Av W1 Av W1 Av 

42 7.25 46 7.24 45 
45 8.14 51 8.14 45 
47 9.03 53 9.03 53 
48 9.92 53 9.90 52 
52 10.77 57 10.76 56 

61 (62) 11-57 51 11.57 56 (57) 
60 12-42 65 (66) 12.35 51 

64 (65) 13.09 69 (71) 13.03 52 (53) 
63 (65) 13.68 68 (70) 13.64 50 

Nst Nd range 
5 4-7 
6 5-10 
7 6-13 
8 7-14 
9 8-16 

10 9-18 

For abbreviations used, see Table 1. 

sequences containing seven, eight, nine and ten start- 
ing phases, respectively, and consequently 13, 12, 11 
and 10 determined phases. For a fixed Ncy, the 
average weight of the determined phases decreases 
with Nst, and since a lower statistical weight implies 
a larger phase error, the largest average errors are 
expected to occur for the lowest Nst (see Table 2) in 
spite of a large spread of individual values. It can 
also be observed that, for increasing Ncy, the 
minimum number of starting phases necessary to 

obtain optimal sequences increases as well. At the 
end of the procedure only the (maximum) number 
of ten starting phases results in optimal sequences 
and, after stage 28, the phase-determining process 
stops. In order to include all 32 phases in the final 
phase set more than ten starting phases are necessary. 

In Table 3 it is shown that a particular number 
of determined phases can be obtained in an optimal 
way with different numbers of starting phases. For 
constant Nd value, an increase in Nst results in a 
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Table 5. Symbolic phase determination results for Diemal (22 atoms, P21) employing an a priori starting set 
of six phases, found by the convergence criteria (7) and (10) 

Procedure  I I  therefore  equals  IV and  I I I  equals V. For  p rocedure  I I I  (and  V) two al ternat ives are dis t inguished:  (i) p rocedure  I l i a ,  
where  the mos t -p robab l e  phase  indicat ions are not calcula ted;  and  (ii) p rocedure  I I Ib ,  where  the mos t -p robab l e  phase  indicat ions  are 
included in the procedure .  In total  34 phases  are involved.  

I I  

Nd  Av 

5 41 
8 46 

10 48 
12 41 
13 37 

I I I a  

Sequence  with 
highest  W1 second W1 third Wl  

Nd  W1 Av W1 Av W1 Av 

5 4.80 32 4.80 36 4-79 31 
8 7.67 37 7.66 37 7.66 37 

10 9.60 30 9.59 30 9-59 26 
12 11.50 28 11.45 28 11.45 28 
13 12.41 27 12.40 28 12.38 33 
14 13.31 27(26) 13.28 31 13-23 25 
16 15.00 29 14.95 31(32) 14-83 36(37) 
18 16.48 33 (34) 16.45 39 (41) 16.18 41(46) 
19 17.27 37(39) 17.27 37(39) 17.13 45(49) 
20 17.95 43 (46) 

I l l b  

Up to Nd = 17 the same results hold as for I l la  
18 16.48 33 (34) 16.45 39(41) 
19 17.27 37(39) 17.27 37 (39) 
20 17-95 43 (46) 17.82 48(55) 
21 18.50 53 (61) 

16.32 41(49) 
17.13 45(49) 
17.82 48(55) 

For abbreviations used, see Table 1. 

considerable increase in the maximum W1 value and 
consequently in a decrease in the average error as 
well. Indeed, for N d =  13 only, the increase from 
Nat = 7 to Nst = 8 does not lead to a reduction of the 
average error. For N d =  13, 15, 16, 17 and 18, the 
increase in the maximum W1 values does not end 
with Nst = 10, once more indicating that more starting 
phases will improve the final phase sets. Table 4 shows 
that each number of starting phases leads to the 
optimal determination of a limited number of phases 
only. Outside this Nd range, which is different for 
each Nst, determination is either not possible or not 
optimal any longer. 

By comparing the five procedures it can be seen 
that the DPP procedure I is by far the best one and 
much better than the standard SIMPEL method. In 
general, the combination of convergence and dynamic 
extension is also less reliable. Although both pro- 
cedures III and V employ an a priori starting set 
consisting of 11 starting phases the maximum W1 
values do not differ much for procedures I and V. 
For the best comparison for each Nd value the largest 
W1 values at the largest Nst value should be selected. 
For Nd = 10 the W1 values of procedure I tend to 
be larger in spite of the smaller largest Nst value 
whilst those for III are worse. At Nd = 15 it can be 
seen that a further increase of W1 is probable when 
more than ten starting phases are chosen. It may be 
remarked that the larger W1 values for procedure I 
correspond with lower average phase errors as well, 
as can be inferred from Tables 1 and 3. Inclusion of 
the most probable phase indications, as described in 

the last part of § 3, resulted in identical results, as 
listed in Tables 2, 3 and 4. 

5.3. Results for structure Diemal, P21 

The second example for which the DPP procedure 
results will be discussed in a small P21 structure with 
code name Diemal [ N = 22; Van der Putten (unpub- 
lished)]. This example has been selected because the 
structure is easily solvable with procedure II (SIM- 
PEL), involving only a small number of symbols and, 
furthermore, because the effect of including most- 
probable phase indications can be illustrated. There- 
fore, in addition to the numbers I to V, the phasing 
procedure will be characterized further by an a or b 
denoting non-inclusion and inclusion of those phases 
respectively, except of course for procedures II and 
IV where non-acceptance is the only option. 

In all procedures the 34 phases with the strongest 
I El's, interconnected via 40 triplets, have been used. 
Because II and IV yield identical results and similarly 
III and V, only the data for II and III are given in 
Table 5. A standard run of procedure II resulted in 
six starting reflections and the determination of 13 
phases which are on average 36 mc in error. If one 
compares the results of procedure III with those of 
II, one sees that the systematically larger phase errors 
for procedure II illustrate its non-optimality. The 
differences between procedures I l i a  and I l lb  turned 
out to be small. Up to Nd = 17 the largest three W1 
values are identical. Starting at Nd = 18, more optimal 
sequences are found with procedure I l lb  but the extra 
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T a b l e  6. Optimal symbolic phase determination results for Diemal 

The same reflections and triplets as for the data in Table 5 have been used. Procedure  I has been run in two modes:  (i) procedure la, 
no calculation of  most-probable phase indications; (ii) p rocedure  Ib, inclusion of  most-probable phase indications.  The data listed are 
the same for procedures Ia and Ib, unless indicated otherwise (* denotes Ia only). The corresponding data for Ib  can be found  at the 
end of  this table. 

Ia and Ib 

Sequence with 
highest W1 second W1 third W1 

Nd  Nst Ncy W1 Av W1 Av W1 Av 

5 2 7 4.76 21 4.76 13 4.76 21 
3 8 4.79 32 4.79 35 4.78 31 
4 9 4.79 34 4.79 31 4.79 28 
5 10 4.78 30 4.78 25 4.75 31 
6 11 4.75 37 4.73 41 4.73 41 

10 3 13 9.59 26 9.59 26 9.44 20 
4 14 9.59 28 9.59 28 9-59 28 
5 15 9.56 27 9.56 32 9.54 28 
6* 16 9.54 37 9.53 32 9.54 28 
7* 17 9.51 39 9.51 36 

14 4 18 13.21 27 13.21 30(31) 13.20 27 
5 19 13.26 26 13.26 26 13.25 26 
6 20 13.33 25 13.32 28 13.32 28 
7 21 13.35 30 13.35 30 13.32 28 
8 22 13.34 32 13.33 32 13.31 30 

18 5* 23 16.30 36(40) 
6 24 16.84 30(31) 16.84 27 (28) 16.81 30 
7 25 16.90 37 (38) 16.90 31 16.89 33 (32) 
8 26 16.96 34 16.96 34 16-96 32 (31) 
9 27 17.01 36 17.00 26 16.99 37 

10 28 17.00 26 17.00 36 16.98 27 
20 6* 26 18.01 37 (41) 18.00 37 (40) 

7 27 18.54 31(32) 18.52 31 (32) 18.52 31(32) 
8 28 18.65 31 18.64 33 (34) 18.64 28 
9 29 18.74 34 18-73 33 18.72 38(39) 

10 30 18.78 38 18.75 39(40) 18.75 34 
23 7* 30 19.99 48 (56) 

8* 31 20.56 55 (58) 20.32 48(54) 20.32 48(54) 
9* 32 21.16 38(39) 21.16 38(39) 21.10 36(37) 

10" 33 21.30 41(42) 21-30 41 (42) 21.18 40(41) 
24 7* m 

8* 32 20.83 52(60) 20.83 52(60) 
9* 33 21.39 59 (62) 21.39 59 (62) 

Ib only 
I0 6 16 9.54 37 9.53 37 9.52 27 

7 17 9.51 39 9.51 36 9.46 37 
8 18 9.50 36 

18 5 23 16.30 36 (40) 16-23 42 (50) 
20 6 26 18.34 29 18-06 28(29) 18.01 37(41) 
23 7 30 20.03 53 (63) 20.01 53 (63) 19.99 48 (56) 

8 31 21-04 35 (36) 21.00 37 (39) 20.99 34 
9 32 21.16 38(39) 21.16 39 (39) 21.13 36 

10 33 21.30 41(42) 21.30 41(42) 21.22 35 
24 7 31 20.54 57 (69) 20.13 52 (60) 19.81 59 (69) 

8 32 21.74 34(35) 21.71 36(37) 21.56 34(35) 
9 33 21.92 38(39) 21.88 40(42) 21.87 37 (38) 

10 34 21.96 40(41) 21.92 34 21.65 38(40) 
25 7 32 20.64 56(66) 20.63 56(66) 

8 33 21.39 60(72) 21.37 60(72) 2097 56(64) 
9 34 22.62 38 22.58 39(41) 22.44 38 

26 8 34 21.48 60(70) 

For abbreviations used, see Table 1. 

W1 values are still lower than those already present 
in IIIa. In the end, in IIIb one more phase has been 
determined. 

Table 6 contains a selection of the results obtained 
with procedures Ia and Ib. From a comparison of 
Tables 5 and 6 it appears that up to N d =  14 the 
largest W1 values are somewhat larger for procedure 

III. However, for larger Nd those from procedure I 
are systematically better and the average errors corre- 
spondingly lower. This slightly worse performance of 
procedure I at the beginning of the phase determina- 
tion can be explained by inspection of the optimal 
results for each Nd value. Clearly, relatively low- 
weighted sequences in the early stages of  the pro- 
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cedure survive and grow in the later stages to the final 
relatively high-weighted sequences with low average 
errors. 

Table 6 also shows that, if Nd increases, the Nst 
for which the largest W1 values are obtained increases 
as well. At most 20 phases can be determined 
optimally with six starting phases but 20 phases, not 
necessarily the same, may also be determined 
optimally with from seven to ten starting phases with 
a clearly increasing average weight of the determined 
phases. In particular, the large increase of the W1 
value when seven instead of six starting phases are 
involved suggests the use of seven starting phases. In 
procedure I the use of the most-probable phase indi- 
cations shows the same tendencies observed for pro- 
cedure III but in a more pronounced form. In the 
initial stages there is no difference between pro- 
cedures Ia and lb. This was to be expected since, in 
general, weights corresponding to most-probable 
phase indications are lower than those for unique 
phase indications, so for the main part of the phase- 
determination process the former will result in non- 
optimal, and thus rejected, sequences. Only at the 
end of the determination process, when the weights 
of the new uniquely determined phases are decreasing 
or when no phases can be determined uniquely, do 
the most-probable phase indications tend to be 
optimal. For example, for Nd = 24 the maximum W1 
values obtained are clearly better for I b and the 
average phase errors are correspondingly lower. It 
can be concluded that at the moment when procedure 
Ia starts to produce less desirable results, i.e. a small 
increase in W1 values, the results of Ib tend to be 
better. Moreover, with procedure I b it is possible to 
include all 34 phases in the final phase set whilst I a 
yields at most 33 phases. The results for a number of 
other structures tested to far are similar and the con- 
clusion may be drawn that the inclusion of most- 
probable phase indications has a positive effect on 
the final phase-determination results. However, in 
view of the lower associated weights it cannot be 
expected that many more phases will be determined. 
It should also be taken into account that inclusion 
of the extra phases takes about two to three times as 
much computer time. 

5.4. Further test results 

The same procedures have been used for a number 
of other structures. The results of three of these -  
Waltd I N  = 50; Olthof (unpublished)], Angust ( N  = 
40; Rychlewska, Bratek & Wiewiorowski (1978)] and 
Indian I N  = 56; Agarwal, Rastogi, van Koningsveld, 
Goubitz & Olthof (1980)]-  will be discussed here. 

The new procedure I again leads to much better 
phasing. Comparison of the final results of procedures 
II and IV with the results of I with the same Nst and 
Nd values shows a considerable reduction of the 

average phase error, in particular for Angust (from 
90 to 60 me) and Waltri (from 90 to 50 mc). The data 
for Waltri show that 20-25 phases are best determin- 
able with a maximum number of ten starting phases. 
Up to Nd- -24  the W1 value rises steadily for pro- 
cedure Ia, then it starts to drop. For procedure Ib, 
the reduction in the maximum WI value starts after 
N d =  25. The same tendency can be observed for 
Indian, where after Nd = 25 in both la  and Ib W1 
starts to decrease. For Angust no such reduction is 
present, though the increase of the W1 values reduces 
as Nd increases. For all structures, when Nd 
increases, a general increase of the average phase 
error can be observed, accompanied by a decrease of 
the average weight of the phases determined. 

The computing time involved in the DPP procedure 
is larger than for the standard SIMPEL procedure, 
since many symbolic additions are carried out simul- 
taneously, but it is still moderate. 

6. Concluding remarks 

From the test results it can be concluded that the new 
DPP procedure is superior to the currently available 
techniques for symbolic phase determination. The 
DPP procedure incorporates some advantages of the 
commonly used phase-determinaton techniques: 
symbolic phase values are employed throughout the 
procedure, avoiding a premature choice of numerical 
phase values, while the multi-solution aspect is pres- 
ent as well, overcoming the disadvantage of a single 
starting set, but in a more systematic way. A second 
essential feature of the DPP procedure is the absence 
of an a priori fixed starting set. This flexibility offers 
enormous advantages over the current phase-determi- 
nation procedures because in this way the selection 
of the best phasing sequence no longer depends on 
the outcome of the convergence procedure, but on 
the actual phase determination itself. Finally, the 
selection of the symbolic phasing sequences accord- 
ing to the DPP procedure, based on statistical criteria 
only, ensures that in each step of the process the best 
possible decisions are made with respect to the 
criterion function selected, so no better phasing 
sequence(s) could have been obtained without the 
criteria being violated. 

The authors thank Dr C. H. Stam, whose valuable 
criticism helped to improve the quality of this paper. 
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Abstract 

A large set of structure factors for beryllium has been 
measured with a 0.12/~ y-ray diffractometer. The 
present data are in good agreement with other recent 
X-ray and y-ray diffraction measurements. Extinction 
was significant though not very strong. Deformation 
density maps confirm that the bonding goes through 
the tetrahedral holes of the hexagonal close-packed 
structure. Comparisons with band-structure calcula- 
tions indicate that the local-density approximation to 
the density functional theory is valid for beryllium. 
The quality of the data, combined with the earlier 
experimental results, is sufficient to demonstrate that 
the structure factors are sensitive to the valence elec- 
tron hybridization even at high momentum transfer 
[(sin 0)/A > 0.75 A-I]. Core electron deformation is 
a much smaller effect. 

Introduction 

Diffraction of short-wavelength electromagnetic radi- 
ation is a powerful tool for the examination of the 
electronic structure of crystalline solids. Most com- 
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monly the data are interpreted within the kinematical 
theory of diffraction, which is valid for small and 
so-called ideally imperfect crystals. Deviations from 
this theory are nevertheless more often the rule than 
the exception when X-rays of wavelengths 0-5-0-7/~ 
are used, and empirical corrections for secondary 
extinction must be applied to the experimental data. 
The method developed by Becker & Coppens (1974) 
is quite powerful for structure determinations and 
electron-density analysis of organic crystals. For inor- 
ganic materials the degree of perfection is often higher 
and the task of obtaining structure factors with a 
precision of better than one percent becomes quite 
difficult. The use of shorter-wavelength radiation or 
a decrease in the sample size [which requires a high- 
intensity source like a synchrotron - e.g. Bachmann, 
Kohler, Schulz & Weber (1985)] are ways of improv- 
ing the situation. The former of these possibilities has 
been successfully applied with T-radiation from 
neutron-activated sources; examples are measure- 
ments on plastically deformed copper crystals 
(Schneider, Hansen & Kretschmer, 1981) and on 
beryllium crystals of quite high perfection (Hansen, 
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